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1. Investigations of special cases of plane potential gas flows at 
transonfc speeds lead to boundary-value problems of mixed elliptic-hyper- 
bolic equations. In the most interesting cases of solutions of such 
problems, singular points occur on the sonic line. The determination of 
the character of such a singularity often forms the essential difficulty 
of the problem. Such solutions with singularities on the sonic line are 
known for the Tricomi equation 

for which they form a class of self-similar solutions. However, nlane 
potential gas flows are governed by the equation of Chaplygin, which can 
be replaced by the Tricomi equation near the sonic line only as an 
approximation. Chaplygin’ s equation does not possess self-similar solu- 
tions, a fact which complicates the integration of Chaplygin’s equation 
with singularities on the sonic line. 

In the present paper the desired solution is obtained in the form of 
an infinite series. The fire& term of the series corresponds to the self- 
similar solution of Tricomi’ s equation. 

2. As Chaplygin showed, the equation of a plane, vorticity-free, 
adiabatic flow of a gas can be put in the form 

324 



Plane transonic gas flows 325 

Here $ represents the stream function, 8 the angle between the velo- 
city vector and an arbitrary direction, v the speed of the flow, us and 
v* the maximal and the critical speed of the flow, respectively, and K 
the adiabatic exponent. 

From (2.1) it is clear that the sign of the coefficient of the last 
term changes when r = r . In this manner, when we study transonic gas 
flows, we have to deal Gith a mixed elliptic-hyperbolic differential 
equation. As Tricomi has shown [l 1, such equations are more readily in- 
vestigated when they are transformed into a special canonical form, which 
facilitates the determination of the main term of the solution. For Aqua- 
tion (2.1) such a transformation was effected by Frank1 [ 2 I by means of 
a new variable 7: 

Equation (2.1) then takes on the form 

b(rl) = 2P (33 + 1) r2 r/G 1 -- 
II - (43 -t 1) ‘cl VI1 - VP + I) %I(1 -z) 2tl 

(2.2) 

(2.3) 

(2.4) 

In terms of an auxiliary variable z, Equations (2.2), (2.3) and (2.4) 
yield 

z=I/[l--(zp+ l)z]/(l--z). 

(2.5) 

Equation (2.5) provides a parametric representation of the function 
b(q) in terms of the parameter z. We note that for subsonic speeds, i.e. 
for r < r ’ s, the parameter z is a real number, and q > 0. For supersonic 
speeds z takes on purely imaginary values with 1 < 0, and, therefore, 
b(q) remains real for arbitrary negative values of 9. From (2.5) it is 
clear that in the neighborhood of T] = 0 the function b(q) can be developed 
in an infinite series 

b (q) = b, -j- b,q _I- b;q2 -f- . . . (2.6) 

b, = -- 2x -j- 5 

5 (x + I)“. ’ 

b 
I 

= 46x2+ 105x +i25 

175 (x + I)% 
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3. In order to find solutions of (2.3) with singular points on the 
sonic line 7j = 0, it is convenient to introduce still different vari- 
ables 

and to transform (2.3) into 

From (3.1) it follows that 71 = (3~/2)~'~(1- t2)li2, and hence 

lhen bation (3.2) can finally be expressed in the form 

zm-1 2m4-a W-1 - -. 

=(t$-p$); b*(G) 3 p 3 (1-C) ' 
??I=.0 

(3.3) 

We shall seek solutions of (3.3) in the form of the series 

9 (P, 0 = PVo V) i- P x+ +I (t) + PA+ +,, (t) ‘!- . .I := ; p+mfm(I) (3.4) 
m=o 

Substituting (3.4) into (3.3) and equating like powers of p, we ob- 
tain the recurrence relations for the determination of the coefficients 
f,(t) in (3.4): 

(1 - t")fn" -- $-t/T%' $-(h -+"$n)(h_t-$n-!-$)f,E 

2m--I 

L’f ~l~m(~) 3 {l--12)~~{~~~_m"_i-~h -!- $(n ---m - Ql~$&_m_,] 
m-.0 

(n =o, 1, Z,...) (3.5) 

The first relations are as follows: 

(1-22)f~-gtfo’~-h(h-;--~)/“~~=0 (3.6) 
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4. ‘lbe general solution of (3.6) is expressible in terms of hyper- 
geometric functions 

f&)=-q(-+, $+f, $; t2) + B,tF ($ -$ , $ + $ , +; t”) (4.1) 

We note that the left-hand side of (3.7) is obtainable from (3.6) by 
substituting X +.2/3 for A, so that the general integral of (3.7) can be 
written 

fl (9 = fo1 (4 + ‘p1(t> (4.2) 

where the general solution fol(t) of the homogeneous part of (3.7) is 
representable in the form 

r,,(t) = A,F (-f -$ , $ + f , $ ; t”)+ B,tF($ - p , 1 + p , g; t”) (4.3) 

‘lbe particular solution (P,(t) of the nonhomogeneous equation (3.7) can 
be expressed 

R(t) = - $ b, (gy1 - P)‘l’fo (1) 
(4.4) 

as can be easily verified. 

In seeking a solution of Equation (3.8), we first express its right- 
hand side in terms of fl(t) as given by (4.2) and (4.4): 

(1-t2)f2”-+f2’+(h+~)(h+$)f, = 

= b, ($)-“‘(I - t2p [tf,,’ - (h -I- T) fOl] + 

+ (yybl - $ ho*) (1 -P)% (t/,’ - Xf,) + ($)“+- b,2 (1 - p)-“fo (4.5) 

Pmceeding as before, we can represent the general solution of 
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(4.5) as 

fz 0) = fez (t> + 021 @I + %z (4 (4.6) 

where ‘f02(t), the general solution of the homogeneous part of (4.51, is 
given by 

loz{t)=As_P(-~-_,~+$,$;t2)+ 

+R,tF(-+-~,$+$+;t~) (4.7) 

and the particular solutions by 

‘P.21 (t) = - f b, ($)“(l - ~z~‘E~~~ (t) (4.8) 

(p22 (f)= (1 -t'>"[a2fo(t) + P2V,'@)l (4.9) 

% b$ + 3/, h (‘/a bo2 - bl) 

Fig. 1. 

In this manner, the solutions of the system (3.5) are reduced to a 
recurrence procedure which can be carried out without difficulties. If 
in Equation (2.3) we were to neglect the term with the first derivative, 
we would be reduced to Tricomi’s equation, for which each term of the 
series (3.4) provides a self-similar solution. 

5. Let us consider the flow around a diamond airfoil at zero angle of 
attack with the free-stream speed equal to the speed of sound at infinity 
(Fig. l)*. To the flow regions bounded by the sides of the front wedge, 

BC, and BC,, and by the limiting characteristics CIA and $A, corre- 
sponds the region ~C~~~A~~C~~ in the plane of the variables 8, q (Fig. 
2). We are led to the following boundary-value problem: find t;he solu- 
tion $(O, v) of Equation (2.3) in this region, subject to conditions 

* This problem has been treated by many authors. The first and most 
significant solution was that of Ovsiannikov [ 3 1. Later it was 
solved by Guderley and Yoshihara E 4 I by a different method. In these 

wpers, the problem was simplified by replacing Chaplygin’s equation 
(2.3) by Tricomi’s equation (1.1). An attempt to solve the problem in 
Chaplygin’s formulation was made by Aslanov [ 5 1, but his solution 
cannot correspond to physical reality since it becomes infinite on 
the limiting characteristics. 
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*(at fl)=O m 
Ircl- 0 on the hodograph character- 

istics CIDl and C& (5.2) 

(Et@, +mj=o (5.3) 

\p (-- 07 rl) = - 9 (fh v) (5.4) 

The functlon $(@. z,z) is bounded on the sonic 
line C1C2 and on the characteristics ADI and 
ADZ, and 6 grows without limit as point A is 
approached from within the region or along the 

characteristics AIll and ADZ. (5.5) 

Next, we tackle the problem of finding a solution of Chaplygin’s 
equation with a singular point on the sonic line. 

6. In order to satisfy the condition (5.51, we shall seek a solution 
of (2.3) in the series form (3.4). For this, we must set h = - S/3, as 
has been shown by Frank1 16 1. Hence, the series (3.4) takes the form 

Using (4.1) with X = - S/3, and setting A, = 0 so as to satisfy con- 
dition (5.4), we obtain 

f, (t) = B,tP (f , - f , f ; t”) 

= + B, [(I -t2)% (f + t) - (1 + t)” (f - t)] (6.2) 

In seeking the second term of (6.1) which would satisfy condition 
(5.4), we set h = - S/3 and A, = 0 in (4.31, and with the aid of (4.2) 
and (4.3) arrive at 

p-If1 (t) = B,p-W(1, $ , +, t*) - f b,2 ($)“p-r (1 - t2)“*j’o (t) (6.3) 

l%e behavior of hypergeometric functions indicates that the first 
term in (6.3) beccmes infinite as p approaches zero, i.e. on the 
characteristics AD 1 and AD 2, so that the condition (5.5) requires 
setting B, = 0, and (6.3) simplifies to 

p-‘/1 (1) = -a blP-% (t) (6.4) 

In order to find the third term of (6.1), we set A = - 5/3 and A, = 0 
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in (4.7) and find 

f02(0 = B&F ($ , $ , + ; t2) (6.5) 

With B, = 0, it follows from (4.8) that &r(t) vanishes. Also (4.9) 
becomes 

Then, by virtue of (4.6) we have for the third term in (6.1) 

p-“&(t) = B2p-“+F (+ , $ , +- ; t”) + p-'/a cpz2 (t) (6.7) 

‘Ihe coefficient B, must vanish lest the leading term grow indefinitely 
as p + 0, and we find 

P+fz(t)= f $p-"[(b, + 7) tfo’ - (b,e $1 f b,)f,] 

Substituting for f,(t) the value from (6.2), we arrive at the final 
form 

pAj,(t) = 2 B, (+)“(b, + J$J p-+t [(I + t)” ($ - t) + (1 - t)” (-E + t)]-- 

- $(y + $ bl)q2P-"f&) (6.8) 

‘Ihe rest of the terms in the expansion (6.1) are bounded on the 
characteristics and contain an expression with an arbitrary constant 
factor, which we choose so as to make fk(1) = 0 for k > 2. 

In order to satisfy the condition (5.1), it is necessary for the 
solution to be periodic in 8 with the period of 28. In order to make the 
solution (6.1) periodic in 8, let us focus on its evaluation on the sonic 

line, i.e. forv=O, t=landp=8 

q+)(O, 0)=f0(1)6-“‘“+j,(1)e-‘+f,(1)e-‘/” 

By virtue of (6.2) and (6.8) we are led to 

f,(l) = $ 2”“B,,f,(l) = 0, f2(l) = -&&,6”“(b,+ $b,“) 

qlo (0, 0) =: $ 2”“B, [ f+- $ 3”’ (b, -1.. ;:- b,2) 0-““I (6.9) 

7. Let us turn to Equation (2.3) and seek its solutions in the special 

form $J8, 7) = s,(q) sin (2nn6/6). Such solutions satisfy boundary 
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conditim (5.1) for integral values of the index n. Substituting the 

expression fl’n into (2.3), we obtain an equation for s,(q): 

If we require that sn(+ CSO) = 0 and s,(O) = 1, the integral of (7.1) 
is uniquely determined, By virtue of (2.1) and (2.3) such an integral 
can be expressed explicitly in terms of the hypergeometric functions of 
Gaplygin 

Z,(T) = VF (a,, 6,; 2v +- 1; T) (7.2) 

Here 

nn 
v=x, a, + 6, z= 2v - p, a&= --pv(2v+ 1), r. -&* 

Ihe convergent infinite series 

$(B, q) = i &s,(q) sin T B 
n=1 

(7.3) 

represents an exact solution of (2.3), satisfying the boundary conditions 
(5.1), (5.3) and (5.4). In order to satisfy the essential condition (5.5), 
it is necessary to choose coefficients A, in (7.3) in such a way that, 
for q = 0 and 8 + 0, the evaluation of the series (7.3) would match Ex- 
pression (6.9). ‘Ihen the series (7.3) will represent a function bounded 
on the characteristics AD, and AD,. 

8. Next, we need to study the following special solution of Chaplygin’s 
equation (2.1) : 

By virtue of the properties of the functions z ,2(r), the series 
(8.1) converges for r < r * for arbitrary values o ? the parameter A. In 
order to evaluate the series for t il: r*, we utilize a formula from the 
theory of gaarna functions: 

(0.k) 
1 

I’ (1) (piA --_ 1) s t a-te-“’ ,& 

Do 

(8.2) 

Here the integration is carried out along a contour which follows the 
positive real axis first above and then below, and circles the origin in 
a counter-clockwise direction. 

Substituting (8.2) into (8.1), we obtain 
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which, on the sonic line r = rt, becomes 

tot) 
1 

Fa (8, z,) = --:- s th%in e 
r (h) (Ph - 1) a3 cotit - co.5 fpt 

(8.4) 

In (8.41, for small values of 8, the poles of the integrand, at 
t = f i0, lie close to the path of integration. Taking this fact into 
account, it is easy to find the representation of F,<e, rz) as 0 + 0: 

FA (0, 7.) - r (I- h) cos F 113 I’-’ (8.5) 

In particular, for h = - 2/3 and X = 2/3, we have, respectively 

F_,J3, z,) - r (+) cos $ d-“, F,, (6, ZJ - I’ (3) cos $ne-“* (8.6) 

Consequently, we choose for the coefficients of the series (7.3) 

A, = C (n’/s _ an-?a) (8.7) 

where C is an arbitrary constant, and 

3% (Z/3) ti”O a _ 
-(b, + Jg) 

2n”l r (l/3) 
(8.8) 

In other words, the expression 

satisfies all the required boundary conditions except (5.2). This re- 
maining condition can be met by adding to the series (8.9) the following 
series: 

In satisfying condition (5.2) at separate points of the character- 
istics C,D, and C$, (see Fig. 2), we arrive at a system of linear equa- 
tions, which determine a,. ‘Ihe actual values of a, turn out to be small 
compared to the coefficients of series (8.91, so that they may be 
neglected. Thus, the exact solution of Chaplygin’s equation given by 
(8.9) does not vanish on the characteristics C,D, and C,D, (see Fig. 21, 
but remains small. 

9. Utilizing Expression (8.9) for the stream-function I/J, we can obtain 
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the velocity along the front wedge. As shown by Chaplygin, 
abscissa is related to the potential function Cp and to $ 

and these two functions are interrelated as follows: 

acp 
ag== 

%J 1-(fzp+l)-c a* 
az = - &(I - ,y+1 ag (9.2) 

Since along the $0~ of the wedge 8 = S and d$ = 0, utilization .of 
the second of equations (9.2) leads to 

(9.3) 

From the solution (8.9) we derive 

Substituting this into (9.3) and evaluating the integral, we find 

lhis relation determines the velocity along the 
establish the value of the constant C we note that 

wedge. In order to 

lim”(t) = 1 
i++ cosb 

as Z -+z* 
* 

where I is the length of the wedge; hence 

It is important to note that in (9.5) it is not permissible to inter- 
change the limiting process r + r * and the sumning process because the 
resulting series diverges. For the sake of brevity let us designate 



334 S. V. Fal ‘kovich 

10. The expression for the coefficient of pressure for the case of 
sonic free-stream velocity reads: 

(10.1) 

By integrating along the front wedge we find the drag coefficient: 

Upon substitution of the expressions for x and dC$dr from (9.4) and 
(10.11, we are led to 

Evaluating the integral, we finally arrive at 

where 

c, = 8nc sin 6 VZ, 

18 (x - 1) (1 - T,)P+z”mal s2 
(10.3) 

(10.4) 

Eliminating the constant C from (10.3) with the aid of (9.11), we 
obtain 

CX’== 4sin6$- 
1 

(10.5) 

11. In order to evaluate the limit S, in (9.101, let us rewrite it in 
the form 

or S, z S2 + S,, where 

(11.1) 
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In the evaluation of S, we use the asymptotic formula [7 1 

2T*%’ (T*) 
=, F*) 

= A,v'l~ + A, -I- 

A 

1 
= 2*‘“3”‘r (‘/d (% + lp 

I- (‘is) 
, 

and transform (11.1) as follows: 

In proceeding to the limit in the first summation, we find a con- 
vergent series; denoting it by S,, we have S, = S, + S,, where now 

(11.3) 

This expression can be rewritten in the form 

however 

According to the well-known properties of the [-function [lo 1, we 
have 

In this manner we finally arrive at 

All the investigated sums can be represented in the form of power 
series in the variable a/~. A similar representation can be carried out 
for the drag coefficient C,. Detailed calculations of C, for different 
angles 6 will be presented in a separate paper. 

12. Gas flow around a flat plate at sonic speed. Let us 
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consider a plate of length 1 (or an airfoil with a flat 1asPer surface) 
at an angle of attack 6 in a stream which has a sonic speed v = a* 
(Fig. 3). 

The flow field is represented in 
the hodograph plane in Fig. 4. All 
streamlines issue from the point A, 
which corresponds to the flow at in- 
finity, and which therefore appears 
as a singular point. 

The problem reduces to the deter- 
mination of the stream function $ 
satisfying the Chaplygin equation 
(2.1) in the region AB’BOCC’A, 
which possesses a singularity at A 
and vanishes on part of the boundary, 
namely C’COBB’ (see Fig. 4). The 
solution of this problem within the 
framework of the Tricomi equation 
has been obtained by Guderley [ 8 1 , 

Fig. 3. 
Following the method already pre- 

sented, we construct a solution of 
Chap1 ygin’ s equation, which satisfies all the required boundary conditions 
except the vanishing of $ on BB’ and CC’.. Letting 6 = R in (8.9), we 

obtain a special integral of (2.3) in the 
form 

(12.1) 

To this expression it is necessary to 
add a function 1,$(8, n), even in the vari- 
able 8, so that ultimately the flow around 
the flat plate at an angle 6 may be found. 
Considerations analogous to those used in 
the preceding development of (2.1) lead 
to the expression 

Fig. 4. 

Superposing the solutions I,$ and I&, we find the integral 

‘N‘2 (7c) 
=nfa (7) 

(12.3) 
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which has the required singularity at the point A. In order to satisfy 
the conditions of the flow geometry, we add to $Q an analogous expres- 
sion, corresponding to a singularity at A’- (see Fig. 4), a point which 
is a mirror image of A with respect to the segment BC: 

‘Iken $ = & + qO will appear as the desired solution: 
(,12.4) 

lhe constant y 
be a branch point 
necessary for the 
vanish so that 

Consequently 

is determined from the condition that 0 (Fig. 3) must 
of tha stream function [ 9 1. For this it is clearly 
coefficient of the first tens of the series (12.4) to 

(1 - a) cos d -f-, 7 sin 6 = 0 

y = (a - 1) ‘W 8. 

Substituting this value of y into (12.41, we find 

‘lhis solution does not vanish on the characteristics BB’-and CC’i 
as required, but its values there are small. The conatant c can be ex- 
pressed in terms of the length of the plate just as in the case of the 
wedge. 
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